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A method for calculating radiative corrections to high-energy inelastic electron-nucleus scattering is 
presented. The method is applicable to the case where only the scattered electron is detected at a given angle 
and energy. As an example of this procedure, we have calculated the radiative corrections to inelastic 
electron-deuteron scattering. 

I. INTRODUCTION 

IN this paper, we present a general method for 
calculating radiative corrections to inelastic electron-

nucleus scattering. The experimental situation that we 
consider is that of a beam of electrons with a well-
defined energy being scattered through an angle 0, the 
energy spectrum of the final electrons being measured. 
In addition to the elastic peak, a continuous spectrum 
of inelastic electrons is observed, as shown in Fig. 1. 

The diagrams which contribute to the radiative 
correction are shown in Fig. 2. Figure 2(a) represents 
the basic process without radiative corrections, Fig. 
2(b) is the electron vertex modification, Figs. 2(c) 
and 2(d) represent the emission of a real photon, and 
Fig. 2(e) gives the contribution due to vacuum polari­
zation. The "blob" in each of the figures represents the 
interaction of a virtual photon with the target nucleus. 

Since for elastic scattering the kinematics are 
determined, the maximum energy of a photon which 
may be emitted in process 2(c) or 2(d) is limited by 
the experimental quantity AE, shown in Fig. 1. Several 
authors1,2 have calculated radiative corrections to 
elastic electron scattering, the results being expressed 
in terms of the initial and final electron energies, the 
scattering angle, and the experimental resolution AE. 

For the continuous inelastic spectrum shown in 
Fig. 1, one cannot define experimentally a quantity 
analogous to AE, hence the maximum energy of a 
photon which may be emitted in process 2(c) or 2(d) 

FIG. 1. Typical 
energy spectrum of 
final electrons, show­
ing the elastic peak 
and the inelastic con­
tinuum. 
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may be quite large. In addition to this complication, 
the matrix element for inelastic scattering is usually a 
rapidly varying function of the momentum transfer, 
and one must consider the change in the momentum 
transferred to the nucleus due to the emission of a 
photon in either process 2(c) or 2(d). This is in contrast 
to the elastic-scattering case where the matrix element 
is a rather slowly varying function of the momentum 
transfer. 

FIG. 2. Diagrams 
contributing to the 
radiative correction. 

2{b) 2Cc) 

2(d) 2(e) 

In order to simplify the calculation of the radiative 
corrections to the inelastic spectrum, we have made an 
artificial division of the photons emitted in 2(c) and 
2(d) into soft and hard photons. Soft photons have an 
energy less than AS while hard photons have an energy 
greater than AS, AS being an arbitrary cutoff. This 
division simplifies greatly the calculation since one may 
neglect the momentum dependence of the matrix 
element for the basic process in calculating the soft-
photon contribution, while the contribution from hard 
photons may be evaluated easily by assuming that 
photons are emitted only in two directions: namely, 
the directions of incoming and outgoing electrons. 

The contribution of the soft photons is treated in the 
usual manner3 while the contribution of the hard 
photons is calculated numerically, taking into account 
the dependence of the matrix element for the process 
on the momentum transfer. 

In order that the calculation be valid, it must be 
possible to find a range of A S where the results of the 
calculation are insensitive to AS. We have found that 
it is possible to do this for the case of inelastic electron-
deuteron scattering. 

«D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 
(N. Y.) 13, 379 (1961). 
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FIG. 3. Diagram representing the basic 
electrodisintegration process. 

In the next section, we give the details of the method, 
while in Sec. I l l an example of the application of this 
method to the calculation of the radiative corrections 
to inelastic electron-deuteron scattering is given. 

II. METHOD OF CALCULATION 
A general formula for the uncorrected inelastic 

differential cross section has been given by Gourdin,4 

the result being expressed in terms of two inelastic 
form factors Vo(q2,W2) and Vi(q2,W2). For simplicity, 
Gourdin considered the case of electrodisintegration as 
shown in Fig. 3. 

We use the following notation: ^ = £ = 1 , pi and pf 
are the four momenta of the initial and final electrons. 
\j>= (E,p) with p2=E2—p2']. pA is the four momentum 
of the target nucleus A, pB and pc are the momenta 
of the recoiling particles. q2= (pi—pf)2, W2= (pB+pc)2 

^q2+MA
2+2MA(Ei-Ef). 

For relativistic electrons (E^>m), Gourdin's result 
for the diagram shown in Fig. 3 may be written in the 
form 

( — ) 
a NANBNC COS2 (6/2) P 

2(2TT)3 MA 4E* sin4(0/2) W 
X[Vi(f,W*)+2 tan2(0/2)Fo(?W2)]. (2.1) 

P is the magnitude of the three momentum of particle 
B in the center of momentum frame of the recoiling 
particles. NA, NB, NC are normalization coefficients 
defined by Ni=Mi for fermions of mass Mi, iV»=J for 
bosons. 

Although Gourdin's result is given explicitly for the 
case in which the target nucleus breaks down in only 
two particles, this form is valid for the general inelastic 
cross section with an arbitrary number of particles in 
the final state. 

As discussed in the introduction, in order to obtain 
the radiative corrections to the inelastic cross section, 
we divide the photons emitted into soft photons of 
energy less than AS and hard photons of energy greater 
than AS. The radiative corrections due to the emission 
of soft photons and the virtual photon contributions 
shown in Fig. 2(b) and Fig. 2(c) may be obtained using 

1. k / p , 

the results of Ref. 3. The result is 

<P<r \ / d\ 

where 

/ d2<x \ / d*a \ 
( ) ==( - ) ( l + « ) , (2.2) 
XdEfCKl/ntt \dEfd2/0 

~ wL\EiEf/L\m2/ J 2 n \ £ / / 

13 /q2\ 28-1 
+ - l n ( - ) ~ . (2.3) 

6 W/ 9 J 
The radiative corrections due to the emission of hard 
photons are performed with the assumption that hard 
photons are emitted in two directions: the direction of 
incoming and outgoing electrons. The momentum 
spectrum of the hard photons is folded into the mo­
mentum dependence of the matrix element; thus the 
details of the interaction process are taken into account. 

The T matrix for diagrams 2(c) and 2(d) is the 
product of two matrix elements for the electromagnetic 
current jy.. 

Tfi=(W)(pf,k\JApi)(pBpc\j,\pA). (2.4) 

The first factor is 
r\Pr*) Kpi'*)l 

(P/M jApi)^eusf{pf)yllu8{p%)\ - -— -

+eu8>(pf)\ 1 Ws(pi 
L2(k-Pf) 2(k-Pi)J 

:), (2.5) 

W,= 

where u8(p) is a Dirac spinor describing an electron of 
energy momentum p and spin s, and e is the photon 
polarization. 
• We have to calculate |7V;|2. The summation on 
electron spins is easily performed and the result can 
be very much simplified with the assumption that 
photons are emitted only in the two directions pre­
viously discussed. This allows us to replace &„ by 
piy.(k/Ei) for a photon emitted in the direction of 
incoming electrons, whenever &M occurs in the numerator 
or in a scalar product not involving p^ in the de­
nominator. [One cannot, of course, make this approxi­
mation when k appears in the scalar product (k • pi) in 
the denominator.] Similarly, when the photon is 
emitted in the direction of outgoing electrons, &M will be 
replaced by p/p(k/Ef) whenever possible. The result is 

e2r/ m2 2(pi-pf) k km' \ 

IEZ(pfMUpi)(pfMjApi)*>--\ (~7r^+7r-^7r^+^7r-T+^7r~^) 
2m2l\ (k-pi)2 (k*Pi)(k-pf) Ei(k-Pi) Ei(k>Pi)2/ 

1 
X(pinPfv + pivpf»— (pi-pf)gi») — ~ -(P^Pfv+pivpfii—2(pi'pf)gllv) 

(k-pi) 2pivpiv. (pi'Pf) k 

(k-pi) (k-pi)(k-pf)Ei 
(2piflpiv—pipp/v—p, ivpfti) • (2.6a) 

[ M. Gourdin, Nuovo Cimento 21, 1094 (1961). 
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2. k / p / 

e2 r / m2 2(prpf) k km2 \ 
9^- I 1 1 ){piiipfvJrpiVpfix-{pi'pf)gllv) 

2ml\ (*•#,)» (k.p<)(k-pf) E,(k.pf) E,(k-pf)*r*f 

1 ZpfvPfH (Pi'Pf) k 1 
+ ~ 7(pinPf*+pippf»—2(pi'Pf)gi»)+— - + - - — -—(Pfrfiv+pfvpin-lpftpfv) . (2.6b) 

(*•#/) (*•#/) (k-Pi)(k-pf)Ef J 

After integration on photon angle, in order to get rid of the angular dependence in the denominators of expressions 
(2.6a) and (2.6b), we get the very simple result 

1. k / p , 

r 2we2rl/ k\/ /2_A \ k /2_A"i 

ii!W-di(1-s)(2"'t)-1)+sInt)J[?"f"+#"#"^'")£"-]' a,a) 

2. k / P / 

fdOM=-pJ-(l+-)(2 l n ( — ) - l ) + — lJ—)\Pi,p/r+pivPf,- {pvPdg,,']. (2.7b) 
J km2Lk\ Ef/\ \m/ / Ef \m/J 

This tensor is proportional to the well-known tensor appearing in the basic process when no photon is emitted. 
Thus it enables us to give the contribution from hard-photon emission as a function of the same inelastic form 
factors that appear in the uncorrected cross section given by Gourdin. The result for the hard-photon contribution 
is the sum of two terms. For each case there corresponds a different momentum transfer and energy of the recoiling 
particles in their center-of-momentum frame. Thus, we define the following quantities: 

(pi-p/-k)*=qt=f(l-k/Ed for k / P i ; (2.8a) 

(Pi-Pf-ky=q?=q>(l+k/Ef) for k / p , . (2.8b) 

Similarly, we define the corresponding quantities Wi, Pi, kmttx. < for k^p* and Wf, Pf, &max / for k^p / . 
Our result for the hard photon contribution is 

/ (Pa- \ o? NANBNC cos2(0/2) r / ' " " ' ' Pi 1 
( ) = / dk [ F 1 ( g ^ ^ ) + 2 t a n 2 ( 0 / 2 ) F o ( ^ , W ) ] 
\dEfdQ/haTd (2T)* MA 4E? sin4(0/2)UAS Wi{\-k/Etf 

[-1/ k\/ /2J5A \ k 2En r*—/ Pf 1 
X H 1 ) ( 2 1 n ( ) - l ) + — I n — + / dk 

U \ Ei/\ \mJ / Ef ml J AS W, (1+k/Ef)* 

X[ W , W 7 ) + 2 t*tf(d/2)V0(qf*,Wf){-(l+—^2 \n(—)-1\+— I n — 1 1 . (2.9) 

The final result is given by corrections are calculated using Eq. (2.9) and a new 
set of form factors is found. The iteration is continued 

( ^ a \ I___\ \ ( \ (o irvi u n t u a consistent set of form factors is determined. In 

dEfdJiot^\dEfdJaoit \dEfdJhaid' ' practice, we feel that it is more feasible to assume a 
model for Vo and Vi in order to calculate the radiative 

As pointed out by Tsai,5 Eq. (2.9) could, in principle, corrections. 
be used to determine the factors V0 and Vx from the It should be emphasized that the validity of this 
experimental cross section by means of an iterative procedure is dependent on being able to find a cutoff 
procedure; i.e., one first neglects the radiative correc- AS such that the total cross section is practically 
tions in determining V0 and Vi. Then the radiative independent of AS over a large range of values. This 
_ _ _ _ _ _ is indeed the case in our numerical results obtained for 

•Y. S. Tsai, Proceedings of the International Conference on inelastic electron-deuteron scattering, given in the 
Nucleon Structure, Stanford, June 1963 (to be published). following section. 
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TABLE I. Radiative corrections to high-energy inelastic electron-deuteron scattering. The results were calculated using a cutoff 
A 8 = 5 MeV. For simplicity of notation, we have written (d2<r/dEfdti) as simply <r. The quantity A is defined by the relation o-totai 
=<r0(l — A). All differential cross sections are expressed in F2 MeV-1. 

Ei 

339 
197 
936 
586 

Ef e 

285 60 
143 135 
623 60 
273 145 

Q2 

2.48 
2.47 

14.95 
14.92 

0*0 <rsoft <?"hard Ctotal 

1.33 X10"6 1.11X10-6 7.01 X10-8 1.18X10-6 

2.195X10-7 1.90X10-7 1.08 X10"8 2.01 X10~7 

2.86 X10-8 2.15X10-8 3.675X10-9 2.52X10-8 

7.20X10-9 5.70X10-9 8.72 X10"10 6.57X10"9 

A 

0.11 
0.08 
0.12 
0.087 

TABLE II. Effect of the variation of A 8 on the corrected cross section. The notation is the same as that of Table I. 

Ei 

475 
401 
352 
283 

Ef e 

377 60 
302.5 75 
254 90 
185 135 

0"total 

q* A8 = 3MeV A8 = 5 MeV AS = 10MeV 

4.59 3.80X10-7 3.78X10-7 3.78X10"7 

4.61 2.37X10-7 2.36X10-7 2.36X10"7 

4.58 1.66X10-7 1.65X10-7 1.65X10"7 

4.58 8.11X10-8 8.10X10-8 8.12X1Q-7 

A8= 15 MeV 

3.80X10-7 
2.37X10-7 
1.66X10-7 
8.17X10-8 

III. ILLUSTRATIVE EXAMPLE 

As an example of the application of this procedure, 
we have calculated the radiative corrections to inelastic 
electron-deuteron scattering. The model we take for 
VQ and Vi in this case is that given by Durand.6 In 
this model, the deuteron is assumed to be in a pure S 
state and to be adequately represented by a Hulthen 
wave function. No final-state interaction between the 
final nucleons is taken into account. Although this 
model is perhaps not the best available, it is sufficient 
to give a very good first approximation to the shape of 
the inelastic electron spectrum, which is all that is 
required for the calculation of the radiative corrections. 
Neglecting the interference terms which give a negligible 
contribution, Durand's result may be written in the 
form 

V0(P,q2) = 4(4TT) W ( 2 M - e) (q*/4M%(Flp+KpF2p¥ 
+ (Fln+KnF2n¥lI(Ptf), (3.1a) 

F1(P,g2) = 4(47r)2a^(2M-€)[F l p
2+F l t t

2+(^/4M2) 

X(Kp*F2/+Kn*F2r?)y(Ptf), (3.1b) 
where 

' . r - 1 1 

pyLo 2 - i ) (y2-i) 

(y-x) 
In 

(*-l)(y+l)| 

(*+l)(y-l)IJ 
x=(o?+P2+qi/4:)/Pq; y= (p*+P*+q*/4)/Pq. 

The Hulthen wave function of the deuteron is 

N re-ar—e-P1'-
¥ = - [ e~ar—e~prml 

r J * (4TT) 

The proton form factors Flp and F2p are determined 
by the elastic electron-proton scattering experiments. 

6 L. Durand, III, Phys. Rev. 123, 1393 (1961). 

The neutron form factors Fin and F2n are obtained 
from the inelastic electron-deuteron experiments and 
in principle may be determined only after the radiative 
corrections are known. However, the results for the 
radiative corrections are quite insensitive to the exact 
value of the nucleon form factors. In our calculation, 
we have used the form factors given by DeVries 
et al? 

Some typical results of the calculation are given in 
Tables I and II. Note that, from the results of Table 
II, a value of AS can be found such that the total 
corrected cross section is independent of this parameter 
over a wide range. 

Our method for calculating radiative corrections has 
been employed to calculate the corrections to the shape 
of the spectrum of inelastic electron-deuteron scatter­
ing. A typical result is shown in Fig. 4. Although it is 
difficult to estimate the errors introduced by our 
approximations, we believe that the over-all result is 

FIG. 4. Energy 
spectrum of final 
electrons following 
the electrodisintegra-
tion of deuterium. 
The incident energy 
is 475 MeV and the 
scattering angle 60°. 
The dashed curve 
shows the uncorrect­
ed spectrum based on 
the Durand's theory, 
while the solid curve 
shows the corrected 
spectrum. 
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7 C. DeVries, R. Hofstadter, and R, Herman, Phys. Rev, 
Letters 8, 381 (1962). 
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of the same degree of accuracy as the calculations of 
radiative corrections for elastic-scattering processes. 
We have, however, throughout this treatment neglected 
the emission of photons by the heavy particles. This 
process may become important for very energetic 
electrons; further calculations would be necessary in 
that situation. 

I. INTRODUCTION 

IN the analysis of scattering phenomena, the funda­
mental quantity is the scattering amplitude. It is a 

function of the momenta of the various incoming and 
outgong particles and a finite dimensional matrix in the 
spin space of the various particles. The total dimension­
ality of the amplitude is the product of the dimension­
alities of the spin space of each particle, so that a particle 
of finite mass and spin j (j = 0, § ,1- * •) contributes a 
factor 2j+l to the total dimensionality, while a mass-
less particle contributes a factor 1. Massless particles of 
opposite helicity are counted as different particles, since 
no proper Lorentz transformation, which is what relates 
different physical observers, mixes these states. 

Each particle corresponds to an irreducible unitary 
representation of the inhomogeneous Lorentz group. 
Under a Lorentz transformation, the amplitude remains 
invariant when the momentum and spin variables of 
each particle are transformed according to the corre­
sponding representation. This is the fundamental state­
ment of Lorentz invariance for scattering phenomena 
and is expressed mathematically below. By "construct­
ing a scattering amplitude" is meant finding the most 

* Present address: Centre d'Etudes Nucleaires de Saclay, 
Gif-sur-Yvette, Seine et Oise, France. 
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general matrix of given dimensionality that has the 
correct transformation properties. In practice, this is 
accomplished by expressing the amplitude as a finite 
sum over a minimum number of spin matrices multiplied 
by Lorentz scalar coefficients. It is these spin matrices, 
with the correct transformation properties, that are 
actually constructed. 

The reasons for basing the construction on Lorentz 
invariance alone are twofold. On the one hand, the 
method is direct and provides a unified treatment for 
all spins. On the other hand, it is important in the con­
frontation of theory with experiment to lay bare the 
logical foundations of the theory so that it is clear when 
a general postulate, such as Lorentz invariance, is being 
tested, rather than more-particular assumptions. In the 
literature, one finds most commonly an alternative 
method. Namely, the most general invariant operator is 
constructed that may be sandwiched between eigen-
functions of the free-field equations corresponding to 
the various scattered particles. This method is perhaps 
more cumbersome, since the number of field components 
is in general larger than the number of spin states, 
particularly for large spin. Also, the free field corre­
sponding to a given spin is not unique.1 More in> 

1 E . P. Wigner, Theoretical Physics (International Atomic 
Energy Agency, Vienna, 1963), p. 60. 
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The fundamental statement of relativistic invariance for scattering amplitudes is that the amplitude re­
mains invariant when the momentum and spin variables of each particle are transformed according to the 
corresponding irreducible, unitary representation of the inhomogeneous Lorentz group. To "construct an 
amplitude" is to find the most general function that has the required transformation properties. This con­
struction, which had been previously effected for any number of massive particles of arbitrary spin, is 
extended here to include massless particles of arbitrary spin as well. In the case of photons, the resulting 
formalism is compared with the usual one that makes use of transverse polarization vectors and a gauge-
invariance condition. The two formalisms are proven to be equivalent. I t is concluded that the gauge condi­
tion is superfluous as an independent physical principle for the purpose of constructing amplitudes. Its use 
in the conventional formalism is simply a way of imposing the Lorentz-transformation properties appropriate 
to massless particles. In an Appendix, the known analogous construction for massive spin-one particles is 
shown to be equivalent to the usual formalism, and the requirement of Lorentz invariance is shown to be 
equivalent to the usual prescription for virtual photons as well. 


